
SANDXXXX–XXXX

Unlimited Release

Printed December XXXX

PICO User Manual
Version 1.0

William E. Hart
Discrete Algorithms and Mathematics Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM
wehart@sandia.gov

Cynthia A. Phillips
Discrete Algorithms and Mathematics Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM
caphill@sandia.gov

Jonathan Eckstein
MSIS Department

Faculty of Management and RUTCOR
Rutgers University

640 Bartholomew Road
Piscataway, NJ 08854

jeckstei@rutcor.rutgers.edu



Abstract This documeft provides a user’s guide for the PICO software library. PICO





Figure 1: An illustration of inter-package dependencies within Acro that are used with PICO.

illustrates the dependencies between the Acro packages that are used with PICO. The dashed lines



cvs.a and ssh.cvs



These tools are available at http://software.sandia.gov.

The following mailing lists are used to manage Acro:



Figure 2: An illustration of how core PICO objects are used to derive a custom application solver.

PICO uses MPI because it is designed to be customized for maximum performance on MPP systems
like the ASCI supercomputers. The design of PVM stresses the ability to operate on heterogeneous
platforms, at some sacrifice in performance.

4.2 Extending the PICO Core

Defining a serial branch-and-bound algorithm with PICO requires the extension of two principal
classes in the PICO serial layer: branching and branchSub. The branching class stores global
information about a problem instance and contains methods that implement various kinds of serial











template <class FunctionT>
class parallelLipshitzian : public parallelBranching, public serialLipshitzian< FunctionT>
{
public:

/// Return a new subproblem
pico::parallelBranchSub* blankParallelSub();

/// Pack the branching information into a buffer
void pack(utilib::PackBuffer& outBuffer);

/// Unpack the branching information from a buffer



int main(int argc, char* argv[])
{
try {

/// Reset the UTILIB global timing information
InitializeTiming();
/// If we’re using MPI, then initialize the MPI data structures
#if defined(USING_MPI)
uMPI::init(&argc,&argv,MPI_COMM_WORLD);
int nprocessors = uMPI::size;
#else
int nprocessors = 1;
#endif
FunctionClass problem;

/// Do parallel optimization if we’re using more than one processorJ 0 -11.955 Td[(int)f (nprocessors > 1) {
#if defined(USING_MPI)
CommonIO::begin();
CommonIO::setIOFlush(1);



/// A simple quadratic problem
class FunctionClass
{
public:

///
FunctionClass()

{
lower.resize(1l43o{













UP BOUND C0002 1

UP BOUND C0003 1

ENDATA

If this file is named SC.mps, then we can directly apply PICO as follows:

PICO SC.mod





References

[1] Q. Chen and M. C. Fearis. FATCOP: A fault toleaant Condor-PVM mixed integer progaamming
solvea.


